Monday, August 09, 2010

Danish Company to Build Anaerobic Digestion Plant in N Ayrshire Scotland

Denmark’s market leading supplier of AD technology is to build a large AD plant in Scotland. The agreement which amounts to approximately 8.0 million Euros has been entered into with one of the largest energy companies in the UK, Scottish and Southern Energy.

The Scottish AD plant will be built at Barkip, North Ayrshire. It is expected to be operational for energy production in early 2011 and will contribute to achieving Scottish targets for CO2 reduction. The plant will be capable of processing 80,000 tons of organic waste annually, producing 2MW of renewable electricity. The plant will be the first for both Xergi and SSE in Scotland.

The entire plant will be delivered by Xergi and will convert the organic waste into renewable energy in the form of methane gas and nitrogenous organic fertiliser.

The plant consists of reception facilities, a fully automatic feeding system capable of handling many different types of organic waste, anaerobic digesters with a unique stirring system for the production of methane, a CHP (combined heat and power) unit producing power and heat, and storage tanks for the fertiliser.

SSE Chief Executive Ian Marchant said:

“Biogas has the potential to be one of the most important new generation renewable and sustainable energy solutions available to us, capturing the energy contained in waste. SSE is excited about entering the biogas market which we believe offers opportunities beyond on-site electricity generation to include connections to the gas distribution network in the future. This new project will enable SSE to gain experience in owning and operating this technology so we are well placed to bring that knowledge to future projects in Scotland.”

For more information visit the Xergi web site.

Thursday, August 05, 2010

Large Ener-G AD Plant Biogas Cogeneration System Gets Hungary on Map of AD User's

ENER-G is the company playing a big part in great Hungarian wastewater scheme.

One of Europe's most bold biogas from wastewater projects has been switched on in Budapest by ENER-G.

The UK clean technology company's Hungarian subsidiary ENER-G Energia Technologia Zrt. Has designed and constructed this 2.6 million renewable power centre at the Budapest wastewater treatment plant in Csepel.

It will be part of the Living Danube programme, which is Europe's biggest environmental investment currently in development.

ENER-G has installed a 4.5 MWe biogas cogeneration system, along with 3 2.5MW Loos boilers for further hot water generation using natural gas, or biogas. The company also manages the operations and upkeep services. The eco-friendly energy centre will form part of a biological treatment facility covering 70,000m on a twenty-nine hectare site at Csepel Island.

The plant will increase the quantity of biologically treated wastewater in Budapest to 95% by 2010 treating a standard 350,000 m3 / day waste water from almost all of Buda and part of Pest, serving roughly 1,000,000 folks.

The development of the plant took more than 2 years and cost almost half a billion EU Bucks. Financially the project has been backed by the ECU , the Hungarian state and Budapest municipality.

It'll meet high environmental standards, achieving nought emissions and no odours outside of the site borders.

It'll supply up to 4.5MWe of renewable (replaceable) electricity to the site which means that it gives over 50% of the plant's total electricity consumption. This is comparable in output of eight giant air turbines. ]

The maximum 8.5MW heat generated by the mixed heat and power ( CHP ) unit is exploited in the digester process consuming 563m3 / h biogas per unit. The Budapest wastewater treatment plant is a clear illustration of how effective anaerobic digestion is as a commercial and environmental solution for sizeable projects like this, related Balazs Marialigeti, Director of ENER-G.

It is very fulfilling to be concerned in this revolutionary venture and we are looking forward enthusiastically to full commissioning in Sep 2010. Anaerobic digestion ( AD ) transforms organic waste material into energy and is a definite winning technology that delivers important commercial benefits, while helping to reduce carbon dioxide emissions.

Digestion plants produce a biogas that has high methane content of 50-70 percent. This otherwise environmentally damaging gas is a rich fuel that may drive a CHP unit to generate both heat and electricity.

The heat may be employed in the digestion plant alongside for heating in close by buildings, while the replaceable electricity can be sold at premium rates.

ENER-G has substantial experience of building, operating and financing major biogas projects across Europe and the company is expanding its team of specialist engineers to meet increasing demand for methane-rich biogas projects , for example AD.

For more information visit ENER-G's web site.

Wednesday, August 04, 2010

Did You Know that Thames Water Burns Its Sludge (it Also Digests It Too)

Thames Water achieved a saving of £15m on its electricity bill in 2008/9 by generating its own renewable power from its 13.6 million customer created sludge.

Britain's largest water and sewerage company generated a 14 per cent of its power needs from a combination of burning sewage sludge at some locations, and anaerobically digesting it at others, and then burning the methane derived from it.
Thames Water's Climate Change Strategy Manager, Dr Keith Colquhoun, is quoted as saying that their investment in renewable energy plants has been
"good news because we now treat 2.8 billion litres of sewage every day at our 349 sewage works. The solids in sewage have a high calorific content that we use to generate electricity.

"And this isn't a gimmick: as well as helping us to be more sustainable as a company, it also saves money - £15m less spent on energy last year alone, saving money for customers."

"Our goal is to cut greenhouse emissions by 20 per cent on 1990 levels by 2020 - that's about 200,000 tonnes less CO2. By using sludge derived power and other renewable energy sources, we're making significant progress towards this target after cutting emissions by five per cent in the past two years, despite grid energy becoming more carbon-intensive.

"Delegates at the Copenhagen Climate Change Summit must face the fact that combating climate change is no longer about talk. It's about all of us taking action - and in our case, that includes sludge power."

Thames Water - which has the largest renewable electricity generation capacity inside the M25 motorway ring, excluding the commercial electricity generators - uses two methods to generate power from sewage:

1. Thermal destruction with energy recovery, where sewage sludge, which is the solid content of the sewage dried into blocks of 'poo cake', is burned to generate power; and
2. Anaerobic digestion, or (with) CHP (combined heat and power) generation, which is where methane derived from sewage sludge is burned to created heat, which in turn generates power.

The following Thames Water sewage works have AD/CHP plants: Maple Lodge (Rickmansworth), Mogden (Isleworth), Rye Meads (Herts), Deephams (Edmonton), Oxford, Reading, Long Reach (Dartford), Slough, Hogsmill (Kingston), Beddington (Surrey), Swindon, Bishops Stortford, Banbury, Aylesbury, Basingstoke, Bracknell, Camberley, Crawley, East Hyde (Luton) and Wargrave (Berks).

And the following two works use thermal destruction:

Beckton, in East London north of the River Thames, Europe's largest sewage works, which treats about 3.5 million people's waste every day; and Crossness, in East London south of the river, which treats the human equivalent of 2 million people's waste.

After it has been used to generate electricity, Thames Water then offers the remaining sewage sludge to farmers to use as fertiliser, or to developers as landscaping material or soil improver. In 2008/09 the firm put 100 per cent of its sewage sludge to beneficial use, sending none of it to landfill and as a result saving millions of pounds in UK landfill tax.

Further details about using sludge to generate power and Thames Water's 100 % win-win utilisation of sludge for renewable energy production can be found in the company's Corporate Responsibility Report